Comparing Two Means

- By the Central Limit Theorem, we know that the sample proportion (or sample mean) will be approximately normal if certain conditions are met (randomization, 10% rule, success/failure rule)
- Also, the sum or difference of two independent normal random variables is also a normal random variable (and we know how to calculate its mean and variance)

Recall how to add/subtract normal r.v.s

- X is Normal with μ_x =60 and σ_x =4
- Y is Normal with μ_{γ} =45 and σ_{γ} =8

X and Y are independent What are the distributions of X+Y and X-Y?

• X+Y is normal with mean μ_{X+Y} =60+45=105, $\sigma_{X+Y} = \sqrt{(4^2+8^2)}=8.944$

- X-Y is normal with $\mu_{_{X-Y}}$ =60-45=15, $\sigma_{_{X-Y}}$ =8.944

Comparing 2 Means (cont)

 If you have two sample proportions, you can compare them by taking the difference, and seeing if the difference is less than zero

• "
$$p_1 < p_2$$
" is equivalent to " $p_1 - p_2 < 0$ "

 If we want to test if proportion 1 is less than proportion 2, we make the following hypothesis test:

$$H_0: p_1 - p_2 = 0, H_A: p_1 - p_2 < 0$$

Example: Arthritis in Adults over 65

Survey results: 403 out of 1019 men have arthritis, 531 out of 1068 women have arthritis.

- Assume conditions are met for CLT.
- Create a 95% confidence interval for the difference in proportions of men and women who have arthritis.
- p_1 : sample proportion for women
- p₁ is approx normal with mean 531/1068=.4972
 and s.d. √(.4972*.5028/1068)=.0153

Example: Arthritis (cont)

- p₂: sample proportion for men
- p₂ is approx normal with mean 403/1019=.3955, and s.d. √(.3955*.6045/1019)=.0153
- So the sample difference p₁-p₂ is also approximately normal with mean .4972-.3955
 =.1017 and s.d √(.0153²+.0153²) =.0216
- A 95% confidence interval is .1017±1.96*.0216, i.e. .0594 to .1440

Example: Arthritis (cont)

- 95% confidence interval for the difference of proportions of women and men is 0.0594 to 0.1440
- This means we are 95% confidence that the proportion of women 65 and older is between 5.9% and 14.4% greater than that of men.
- Because the interval is entirely above 0, this means we are 95% confident that women are more likely to get arthritis.

Summary: Distribution of Difference of Sample Proportions

- p₁:sample proportion from a sample size n₁
- p_2 :sample proportion from a sample size n_2
- if $p_1 p_2$ is approximately normal then:
 - mean is $p_1 p_2$
 - s.d is $\sqrt{(p_1q_1/n_1 + p_2q_2/n_2)}$

Example: Parent's Attitudes & Smoking

- Survey Results: Teens whose parents disapproved: 57 out of 284 started smoking; teens whose parents were lenient: 12 out of 41 started smoking. Create a 95% confidence interval
- Say ${\bf p}_1$ is proportion for lenient parents, ${\bf p}_2$ for disapproving parents
- mean of $p_1 p_2$ is 12/41 57/284 = .09198
- p₁=.2927, q₁=.7073. p₂=.2007, q₂=.7993
- SE=√(.2927*.7073/41 + .2007*.7993/284)=.0749
- CI = .0920±1.96*.0749, that is -.055 to .239
 Because the CI includes 0, we can not say with 95% confidence that a disapproving attitude of the parents makes teens less likely to smoke

Hypothesis Testing of Proportion Diff

- Consider $H_0: p_1 p_2 = 0$ vs $H_A: p_1 p_2 > 0$
- When calculating our P-Value, we assume the null hypothesis is true. If the null hypothesis is true, the proportion difference has mean 0, and has standard error given as follows:
- Calculate pooled sample proportion: $(x_1 + x_2)/(n_1 + n_2)$; essentially pool both groups together.

• SE=
$$\sqrt{\frac{\hat{p}_{pooled} \cdot \hat{q}_{pooled}}{n_1} + \frac{\hat{p}_{pooled} \cdot \hat{q}_{pooled}}{n_2}}$$

Example: Reproductive Clinic

Clinic reports 43 live births to 151 women under 38, 6 out of 81 for women 38 and older. Let p₁ be the proportion for women under 38, p₂ for 38 and older. For a 5% significance level, is there evidence that the true proportions are different?

•
$$H_0: p_1 - p_2 = 0 \text{ vs } H_A: p_1 - p_2 \neq 0$$

 Note that this is a 2-tailed test. We need to calculate z first to find the P-value

Example: Clinic (cont)

- p₁-p₂ : sample mean is .28476-.07407=.21069
- Under the null hypothesis, the proportion difference has mean 0
- The "pooled proportion" is (43+6)/(151+81)=.2112
- We calculate SE =√(.2112*.7888/151 + 0.2112*.7888/81)=.0563
- z=(.2107-0)/.0563=3.74
- P-Value = 2*normalcdf(3.74,6)=.00018
- Because this is less than our .05 significance level, we reject the null hypothesis

Example: Clinic Cont.

- Because we reject the null hypothesis, let's create a 95% confidence interval for the true proportion difference.
- It should have a mean of .2107 and Standard Error = √(.2848*.7152/151 + 0.0741*.9259/81)=.0469
- CI is .2107±1.96*.0469, or .1188 to .3026

Inferences about mean

- If you take sample data, the sample mean will be normally distributed if the conditions for CLT are met.
- Confidence Interval: $\overline{x} \pm z^*SE(\overline{x})$
- SE(\overline{x}) = σ/\sqrt{n} if σ is known
- SE(\overline{x}) = s/ \sqrt{n} if σ is unknown and n \geq 30

Sample Size Needed for fixed ME

 Sample data was collected from 57 individuals on body temperature

	Mean	Std Dev	Median	IQR
Temp	98.894	0.6824	98.80	1.050

- What sample size is needed for a 95% Confidence interval of true mean to be within 0.1 degrees?
- Use ME=z*s/√n, or .1=1.96*.6824/√n
- Solve for \sqrt{n} to get $\sqrt{n=1.96*.6824/.1=13.375}$, so $n=13.375^2=178.89 \rightarrow$ we round up to 179

Example: On-time flights

- Each month from 1995 to 2006 (144 months) the % of on-time flights was recorded. The mean percentage of on-time flights was 80.2986% with a standard deviation of 4.80694. Construct a 90% confidence interval for the true mean.
- z* for 90% CI is invNorm(.95)=1.6448
- A 90% confidence interval of the true probability of an on-time flight would be 80.2986±1.6448*4.807/√144
- This comes out to be 79.64% to 80.96%

Using T-statistic to make inferences about sample mean

- If the sample size is less than 30, we use a tdistribution rather than the normal distribution.
- Calculate x, the sample mean and s, sample s.d.
- For the hypothesis test $H_0: \mu = \mu_0 vs H_A: \mu < \mu_0$

•
$$t = (\bar{x} - \mu_0) / SE(\bar{x}) = (\bar{x} - \mu_0) / (s / \sqrt{n})$$

 P-Value is the probability of the tail (e.g. tcdf(-100,t,df) where df=n-1

Using a T-Table

 For small sample sizes (less than 30) it is more appropriate to use a T-distribution rather than the normal. You can find T-tables online.

TABLE B: #-DISTRIBUTION CRITICAL VALUES

. Tail probability p													
	ďŕ	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
	1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
	2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
	3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
	4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
	5	.727		1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
	6	718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
	$\overline{7}$.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
	8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5:041
	9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
- 2	10	.700	.879	1.093	1.372	1.812	2.228	2,359	2.764	3.169	3.581	4.144	4.587

T -Table

				10000	5	Tai	il probability p						
	ďf	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
	1	1,000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
	2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
2	3	.765	.978	1.250	1.638	2,353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
	4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610

- Degrees of Freedom (df) is n-1 (1 less than sample size). The columns are different " α "s
- For a 1-tailed test, $\alpha = (1-CI)/2$
- For a 2-tailed test, $\alpha = (1-CI)$
- The table gives the critical t-value based on 'degrees of freedom' and 'significance level'

Calculating P-Value for a T distribution

- You can use "tcdf" in a TI calculator to find the exact P-value for a t-statistic
- Use "tcdf(lower, upper, df)"
- ex) The P-value for t>2.32 with 4 degrees of freedom is tcdf(2.32,100,4)=.0405
- ex) the P-value for |t|>1.645 with 14 df is 2*tcdf(1.645,100,14)=1.222
- A t-table is not exact enough to give a good answer for this

Example: Microwave Popcorn

- Joe thinks that the best setting for microwave popcorn is 4 minutes on power setting 9. He says this results in less than 11% unpopped kernels. He pops 8 random bags to prove himself correct and here are the results (% unpopped): 10.1, 9.4, 9.2, 5.9, 11.9, 5.6, 13.7, 7.6
- H0: p=11%, HA: p<11%
- Assuming α =.05, does this evidence support Joe's claim?

Example: Microwave Popcorn (cont)

- We can easily calculate \overline{x} =9.175 and s=2.7978
- SE(x)=2.7978/√8=.9892
- t=(9.175-11)/.9892 = -1.845
- Sample size of 8 means 7 degrees of freedom.
- P-value is tcdf(-100,-1.845,7)=.0538
- This is higher than our significance level. There is not enough evidence to reject the null hypothesis. Keep trying, Joe!