## Comparing Two Means

- By the Central Limit Theorem, we know that the sample proportion (or sample mean) will be approximately normal if certain conditions are met (randomization, 10\% rule, success/failure rule)
- Also, the sum or difference of two independent normal random variables is also a normal random variable (and we know how to calculate its mean and variance)


## Recall how to add/subtract normal

 r.v.sX is Normal with $\mu_{\mathrm{x}}=60$ and $\sigma_{\mathrm{x}}=4$
$Y$ is Normal with $\mu_{Y}=45$ and $\sigma_{Y}=8$
$X$ and $Y$ are independent
What are the distributions of $X+Y$ and $X-Y$ ?

- $X+Y$ is normal with mean $\mu_{X+Y}=60+45=105$,
$\sigma_{X+Y}=\sqrt{ }\left(4^{2}+8^{2}\right)=8.944$
- $X-Y$ is normal with $\mu_{X-Y}=60-45=15, \sigma_{X-Y}=8.944$


## Comparing 2 Means (cont)

- If you have two sample proportions, you can compare them by taking the difference, and seeing if the difference is less than zero
- " $p_{1}<p_{2}$ " is equivalent to " $p_{1}-p_{2}<0$ "
- If we want to test if proportion 1 is less than proportion 2, we make the following hypothesis test:

$$
H_{0}: p_{1}-p_{2}=0, H_{A}: p_{1}-p_{2}<0
$$

## Example: Arthritis in Adults over 65

Survey results: 403 out of 1019 men have arthritis, 531 out of 1068 women have arthritis.

- Assume conditions are met for CLT.
- Create a $95 \%$ confidence interval for the difference in proportions of men and women who have arthritis.
- $\mathrm{p}_{1}$ : sample proportion for women
- $p_{1}$ is approx normal with mean 531/1068=.4972 and s.d. $\sqrt{ }\left(.4972^{*} .5028 / 1068\right)=.0153$


## Example: Arthritis (cont)

- $\mathrm{p}_{2}$ : sample proportion for men
- $\mathrm{p}_{2}$ is approx normal with mean $403 / 1019=.3955$, and s.d. $\sqrt{ }\left(.3955^{*} .6045 / 1019\right)=.0153$
- So the sample difference $p_{1}-p_{2}$ is also approximately normal with mean .4972-. 3955 $=.1017$ and s.d $\sqrt{ }\left(.0153^{2}+.0153^{2}\right)=.0216$
- A 95\% confidence interval is $.1017 \pm 1.96 * .0216$, i.e. . 0594 to . 1440


## Example: Arthritis (cont)

- $95 \%$ confidence interval for the difference of proportions of women and men is 0.0594 to 0.1440
- This means we are $95 \%$ confidence that the proportion of women 65 and older is between $5.9 \%$ and $14.4 \%$ greater than that of men.
- Because the interval is entirely above 0 , this means we are $95 \%$ confident that women are more likely to get arthritis.


## Summary: Distribution of Difference of Sample Proportions

- $p_{1}$ :sample proportion from a sample size $n_{1}$
- $p_{2}$ :sample proportion from a sample size $\mathrm{n}_{2}$
- if $p_{1}-p_{2}$ is approximately normal then:
- mean is $p_{1}-p_{2}$
- s.d is $V\left(p_{1} q_{1} / n_{1}+p_{2} q_{2} / n_{2}\right)$


## Example: Parent's Attitudes \& Smoking

- Survey Results: Teens whose parents disapproved: 57 out of 284 started smoking; teens whose parents were lenient: 12 out of 41 started smoking. Create a $95 \%$ confidence interval
- Say $p_{1}$ is proportion for lenient parents, $p_{2}$ for disapproving parents
- mean of $p_{1}-p_{2}$ is $12 / 41-57 / 284=.09198$
- $p_{1}=.2927, q_{1}=.7073 . p_{2}=.2007, q_{2}=.7993$
- $\mathrm{SE}=\sqrt{ }\left(.2927^{*} .7073 / 41+.2007^{*} .7993 / 284\right)=.0749$
- $\mathrm{CI}=.0920 \pm 1.96^{*} .0749$, that is -.055 to .239 Because the Cl includes 0 , we can not say with $95 \%$ confidence that a disapproving attitude of the parents makes teens less likely to smoke


## Hypothesis Testing of Proportion Diff

- Consider $\mathrm{H}_{0}: \mathrm{p}_{1}-\mathrm{p}_{2}=0$ vs $\mathrm{H}_{\mathrm{A}}: \mathrm{p}_{1}-\mathrm{p}_{2}>0$
- When calculating our P-Value, we assume the null hypothesis is true. If the null hypothesis is true, the proportion difference has mean 0 , and has standard error given as follows:
- Calculate pooled sample proportion: $\left(x_{1}+x_{2}\right) /$ $\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)$; essentially pool both groups together.
- $\mathrm{SE}=\sqrt{\frac{\hat{p}_{\text {pooled }} \cdot \hat{q}_{\text {pooled }}}{n_{1}}+\frac{\hat{p}_{\text {pooled }} \cdot \hat{q}_{\text {pooled }}}{n_{2}}}$


## Example: Reproductive Clinic

- Clinic reports 43 live births to 151 women under 38, 6 out of 81 for women 38 and older. Let $p_{1}$ be the proportion for women under 38, $p_{2}$ for 38 and older. For a $5 \%$ significance level, is there evidence that the true proportions are different?
- $H_{0}: p_{1}-p_{2}=0$ vs $H_{A}: p_{1}-p_{2} \neq 0$
- Note that this is a 2-tailed test. We need to calculate $z$ first to find the $P$-value


## Example: Clinic (cont)

- $p_{1}-p_{2}$ : sample mean is $.28476-.07407=.21069$
- Under the null hypothesis, the proportion difference has mean 0
- The "pooled proportion" is $(43+6) /(151+81)=.2112$
- We calculate $\operatorname{SE}=\sqrt{ }\left(.2112^{*} .7888 / 151+\right.$ 0.2112*.7888/81)=. 0563
- $z=(.2107-0) / .0563=3.74$
- P-Value $=2 *$ normalcdf(3.74,6) $=.00018$
- Because this is less than our .05 significance level, we reject the null hypothesis


## Example: Clinic Cont.

- Because we reject the null hypothesis, let's create a 95\% confidence interval for the true proportion difference.
- It should have a mean of . 2107 and Standard Error $=\sqrt{ }\left(.2848^{*} .7152 / 151+\right.$ $\left.0.0741^{*} .9259 / 81\right)=.0469$
- Cl is $.2107 \pm 1.96^{*} .0469$, or .1188 to .3026


## Inferences about mean

- If you take sample data, the sample mean will be normally distributed if the conditions for CLT are met.
- Confidence Interval: $\bar{x} \pm z^{*} \operatorname{SE}(\bar{x})$
- $\operatorname{SE}(\bar{x})=\sigma / \sqrt{n}$ if $\sigma$ is known
- $\operatorname{SE}(\bar{x})=s / \sqrt{ } n$ if $\sigma$ is unknown and $n \geq 30$


## Sample Size Needed for fixed ME

- Sample data was collected from 57 individuals on body temperature

|  | Mean | Std Dev | Median | IQR |
| :--- | :--- | :--- | :--- | :--- |
| Temp | 98.894 | 0.6824 | 98.80 | 1.050 |

- What sample size is needed for a $95 \%$ Confidence interval of true mean to be within 0.1 degrees?
- Use ME=z*s/Vn, or .1=1.96*.6824/Vn
- Solve for $\sqrt{ } n$ to get $\sqrt{ } n=1.96^{*} .6824 / .1=13.375$, so $\mathrm{n}=13.375^{2}=178.89 \rightarrow$ we round up to 179


## Example: On-time flights

- Each month from 1995 to 2006 (144 months) the \% of on-time flights was recorded. The mean percentage of on-time flights was $80.2986 \%$ with a standard deviation of 4.80694. Construct a 90\% confidence interval for the true mean.
- $z^{*}$ for $90 \% \mathrm{Cl}$ is invNorm(.95)=1.6448
- A $90 \%$ confidence interval of the true probability of an on-time flight would be 80.2986 $\pm 1.6448 * 4.807 / \sqrt{ } 144$
- This comes out to be $79.64 \%$ to $80.96 \%$


## Using T-statistic to make inferences about sample mean

- If the sample size is less than 30 , we use a $t$ distribution rather than the normal distribution.
- Calculate $\bar{x}$, the sample mean and $s$, sample s.d.
- For the hypothesis test $H_{0}: \mu=\mu_{0}$ vs $H_{A}: \mu<\mu_{0}$
- $\mathrm{t}=\left(\overline{\mathrm{x}}-\mu_{0}\right) / \operatorname{SE}(\overline{\mathrm{x}})=\left(\overline{\mathrm{x}}-\mu_{0}\right) /(\mathrm{s} / V \mathrm{n})$
- $P$-Value is the probability of the tail (e.g. tcdf($100, t, d f)$ where $d f=n-1$


## Using a T-Table

- For small sample sizes (less than 30) it is more appropriate to use a T-distribution rather than the normal. You can find T-tables online.

TABLE B: t-DISTRIBUTION CRITICAL VALUES

|  | Tail probability $p$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df | .25 | .20 | .15 | .10 | .05 | .025 | .02 | .01 | .005 | .0025 | .001 | .0005 |  |  |  |
| 1 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 15.89 | 31.82 | 63.66 | 127.3 | 318.3 | 636.6 |  |  |  |
| 2 | 816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 4.849 | 6.965 | 9.925 | 14.09 | 22.33 | 31.60 |  |  |  |
| 3 | .765 | .978 | 1.250 | 1.638 | 2.353 | 3.182 | 3.482 | 4.541 | 5.841 | 7.453 | 10.21 | 12.92 |  |  |  |
| 4 | .741 | .941 | 1.190 | 1.533 | 2.132 | 2.776 | 2.999 | 3.747 | 4.604 | 5.598 | 7.173 | 8.610 |  |  |  |
| 5 | .727 | .920 | 1.156 | 1.476 | 2.015 | 2.571 | 2.757 | 3.365 | 4.032 | 4.773 | 5.893 | 6.869 |  |  |  |
| 6 | 718 | .906 | 1.134 | 1.440 | 1.943 | 2.447 | 2.612 | 3.143 | 3.707 | 4.317 | 5.208 | 5.959 |  |  |  |
| 7 | .711 | .896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.517 | 2.998 | 3.499 | 4.029 | 4.785 | 5.408 |  |  |  |
| 8 | .706 | .889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.449 | 2.896 | 3.355 | 3.833 | 4.501 | 5.041 |  |  |  |
| 9 | .703 | 883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.398 | 2.821 | 3.250 | 3.690 | 4.297 | 4.781 |  |  |  |
| 10 | .700 | .879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.359 | 2.764 | 3.169 | 3.581 | 4.144 | 4.587 |  |  |  |

## T -Table

|  | Tail probability $p$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df | .25 | .20 | .15 | .10 | .05 | .025 | .02 | .01 | .005 | .0025 | .001 | .0005 |  |  |
| 1 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 15.89 | 31.82 | 63.66 | 127.3 | 318.3 | 636.6 |  |  |
| 2 | 816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 4.849 | 6.965 | 9.925 | 14.09 | 22.33 | 31.60 |  |  |
| 3 | 765 | .978 | 1.250 | 1.638 | 2.353 | 3.182 | 3.482 | 4.541 | 5.841 | 7.453 | 10.21 | 12.92 |  |  |
| 4 | .741 | .941 | 1.190 | 1.533 | 2.132 | 2.776 | 2.999 | 3.747 | 4.604 | 5.598 | 7.173 | 8.610 |  |  |

- Degrees of Freedom (df) is $\mathrm{n}-1$ (1 less than sample size). The columns are different " $\alpha$ "s
- For a 1-tailed test, $\alpha=(1-\mathrm{CI}) / 2$
- For a 2-tailed test, $\alpha=(1-\mathrm{CI})$
- The table gives the critical t-value based on 'degrees of freedom' and 'significance level'


## Calculating P-Value for a T distribution

- You can use "tcdf" in a TI calculator to find the exact P-value for a t-statistic
- Use "tcdf(lower, upper, df)"
- ex) The P-value for $t>2.32$ with 4 degrees of freedom is $\operatorname{tcdf}(2.32,100,4)=.0405$
- ex) the P-value for $|t|>1.645$ with 14 df is $2^{*} \operatorname{tcdf}(1.645,100,14)=1.222$
- A t-table is not exact enough to give a good answer for this


## Example: Microwave Popcorn

- Joe thinks that the best setting for microwave popcorn is 4 minutes on power setting 9 . He says this results in less than 11\% unpopped kernels. He pops 8 random bags to prove himself correct and here are the results (\% unpopped): 10.1, 9.4, 9.2, 5.9, 11.9, 5.6, 13.7, 7.6
- H0: $p=11 \%, \mathrm{HA}: p<11 \%$
- Assuming $\alpha=.05$, does this evidence support Joe's claim?


## Example: Microwave Popcorn (cont)

- We can easily calculate $\bar{x}=9.175$ and $s=2.7978$
- $\operatorname{SE}(\overline{\mathrm{x}})=2.7978 / \sqrt{ } 8=.9892$
- $t=(9.175-11) / .9892=-1.845$
- Sample size of 8 means 7 degrees of freedom.
- P-value is tcdf( $-100,-1.845,7)=.0538$
- This is higher than our significance level. There is not enough evidence to reject the null hypothesis. Keep trying, Joe!

